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Abstract We consider a homogeneous elastic, orthotropic solid containing
three equal collinear cracks, loaded in tension by symmetrically distributed
normal stresses. Following Guz’s representation theorem and solving Riemann-
Hilbert problems we determine the expressions of the complex potentials. Us-
ing the asymptotic analysis, we obtain the asymptotic values of the incremen-
tal stress and displacement fields. We determine the tangential stresses near
the crack tips. Using the maximum tangential stress criterion and numerical
computations we study the interaction problem for a Graphite-epoxy fiber
reinforced composite material.

Keywords Three equal collinear cracks · Riemann-Hilbert problem ·
maximum tangential stress criterion · cracks interaction.

1 Introduction

Crack initiation, propagation direction, crack tip fields and cracks interaction
in static orthotropic plane linear elasticity are the main themes for mathemat-
ical modelling and simulation and represent important problems of Fracture
mechanics. Assume that the admissible equilibrium states of the body are
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plane strain states relative to Ox1x2 plane. In this case the equilibrium states
of the material can be represented by two complex potentials defined in two
complex planes [1-10]. We shall use Guz’s representation of the elastic state
[1], without initial deformation, in a weakly modified form due to Soos [10-17].

Our first aim is to determine the elastic state produced in the body using
complex potentials. Numerous studies regarding this subject were done in the
literature [18-23]. Analytic solutions for stress distribution and crack inter-
action for a composite material containing two collinear cracks can be found
in the works [24-29]. The problem of three collinear crack interaction, elastic
fields distribution and crack propagation using the integral equations method
were studied in [30-34]. Mukherjee and Das [31] considered the problem for
three interfacial cracks between two dissimilar orthotropic media. Using the
theories of stress intensity factors and strain energy release rate they studied
the interaction cracks for a pair of composite materials.

We suppose that our material is unbounded and contains three equal
collinear cracks situated in the same plane Ox1x2 (see Fig. 1). We formu-
late and give the solution of the mathematical problem in Section 2, assuming
that the applied normal stresses have a given constant value.

Our second aim is to find which tip of the cracks will start to propagate
first. To do this we determine in the Section 3 singular parts of the elastic states
near the crack tips using the asymptotic method and following the approach
used in [35], for three equal, collinear cracks in Mode II of fracture.

Several fracture criteria have been suggested in the literature. Our third
aim is to extend the maximum tangential stress σθθ - criterion (MTS) due to
Erdogan and Sih [36-37] and to find which tip will propagate first. For doing
this we consider as an example two configurations of three equal collinear
cracks in a Graphite-epoxy fiber reinforced elastic composite. Using numerical
computations, we determine that:
- in the case when the distance between the cracks is much smaller than their
length, i.e. there exist a strong interaction between the cracks, the inner tips
of the cracks start to propagate first and cracks tend to unify;
- in the case when the distance between the cracks is much greater than their
length, i.e. there exist a weak interaction between the cracks and all cracks
start to propagate almost in the same time.

2 Mathematical problem

We consider an orthotropic, linear elastic material, representing a fiber rein-
forced composite. We assume that the equilibrium states of the material are
plane strain states relative to Ox1x2 plane.

As it was shown by Guz ([1], [2]) in the assumed circumstances the elastic
state of the body can be expressed by two analytic complex potentials Φj(zj)
defined in two complex planes zj , j = 1, 2.

We present Guz’s representation formulae for the case of non-equal roots.
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We have:

u1 = 2Re{b1Φ1(z1) + b2Φ2(z2)}, u2 = 2Re{c1Φ1(z1) + c2Φ2(z2)}
σ11 = 2Re{µ2

1Ψ1(z1) + µ2
2Ψ2(z2)}, σ22 = 2Re{Ψ1(z1) + Ψ2(z2)}

σ12 = σ21 = −2Re{µ1Ψ1(z1) + µ2Ψ2(z2)} (2.1)

where uj , j = 1, 2 represent the component of the displacement field and σij ,
i, j = 1, 2 represent the components of the nominal stress.

In these relations, we denoted by

Ψj(zj) = Φ′
j(zj) =

dΦj(zj)

dzj
, j = 1, 2 (2.2)

and
zj = x1 + µjx2, j = 1, 2. (2.3)

The parameters µj are the roots of the algebraic equation

µ4 + 2Aµ2 +B = 0 (2.4)

with

A =
ω1111ω2222 + ω1221ω2112 − (ω1122 + ω1212)

2

2ω2222ω2112
, B =

ω1111ω1221

ω2112ω2222
. (2.5)

The parameters bj , cj , (j = 1, 2) have the following relations:

bj = −(ω1122 + ω1212)/Bj , cj = (ω2112µ
2
j + ω1111)/(Bjµj) (2.6)

with
Bj = ω2222ω2112µ

2
j + ω1111ω2222 − ω1122(ω1122 + ω1212).

The compliance coefficients ωklmn (k, l,m, n = 1, 2) can be expressed through
engineering constants of the composite by the following relations:

ω1111 =
1− ν23ν32
E2E3H

, ω2222 =
1− ν13ν31
E1E3H

, ω1122 =
ν12 + ν32ν13
E1E3H

, (2.7)

ω1212 = ω1221 = ω2112 = G12,

with

H =
1− ν12ν21 − ν23ν32 − ν31ν13 − ν21ν32ν13 − ν12ν23ν31

E1E2E3
. (2.8)

In these relations E1, E2, E3 are Young’s moduli in the corresponding sym-
metry directions of the material, G12 is the shear modulus in the symmetry
plane Ox1x2 and ν12, ..., ν32 are the Poisson’s ratios.

Also, for an orthotropic material the roots µ1 and µ2 usually are not equal.
In what follows we consider this case of non-equal roots,

µ1 ̸= µ2. (2.9)
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Let us assume that we have an unbounded composite which contains three
equal collinear cracks situated in the same plane Ox1x3, the Ox2 axis being
perpendicular to the cracks faces. We consider that our cracked composite is
loaded by remote normal stress p, (see Fig. 1). So, we can use Guz’s complex
representation to study our problem corresponding to the first mode in classical
fracture mechanics.

�� �� �� �� �� �� -
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Fig. 1 Three equal collinear cracks

We denote by C the cut corresponding to the segments (−(n+ 2)a,−na),
(−a, a) and (na, (n+ 2)a). Here a > 0 is a given positive constant and n is a
real number greater than 1.

According to the considered mechanical problem and by means of the prin-
ciple of superposition, the cracks faces are loaded in tension by normal stresses
p = p(t), t ∈ C , symmetrically distributed relative to the plane containing the
cracks. The components σ21 and σ22 of the nominal stress must satisfy the
following boundary conditions:

σ21(t, 0
+) = σ21(t, 0

−) = 0, σ22(t, 0
+) = σ22(t, 0

−) = −p(t), (2.10)

for t ∈C .
Also, at large distances from the cracks the displacements and stresses must

vanish; i.e.

lim
r→∞

{ui(x1, x2), σij(x1, x2)} = 0, r =
√
x2
1 + x2

2, i, j = 1, 2. (2.11)

From (??) we conclude that the complex potentials have to fulfill the fol-
lowing far field restrictions

lim
zj →∞

{Φj(zj), Ψj(zj)} = 0, j = 1, 2. (2.12)

We denote by f+(t) and f−(t) the upper and lower limits of a complex
valued function f(z), z = x1 + ix2, i.e.

f+(t) = lim
z→t,
x2>0

f(z) and f−(t) = lim
z→t,
x2<0

f(z). (2.13)
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From the Guz’s representation formula (??)5 and from the boundary con-
dition (??)1 we get:

µ1Ψ
+
1 + µ2Ψ

+
2 + µ1Ψ̄

−
1 + µ2Ψ̄

−
2 = 0,

µ1Ψ
−
1 + µ2Ψ

−
2 + µ1Ψ̄

+
1 + µ2Ψ̄

+
2 = 0 (2.14)

where the superposed bar denotes the complex conjugation.
Adding and subtracting the above relations, using the well known propri-

eties of Cauchy’s integral ([4], Ch. 4-6) and following the same procedure used
by Craciun and Soos [3] we obtain that the complex potentials involved in our
homogeneous Riemann-Hilbert problems have to satisfy in the whole complex
plane the restriction

Ψ2(z) = −µ1

µ2
Ψ1(z). (2.15)

Now, using (??) in the second boundary condition (??)2, we obtain that
the complex potential Ψ1(z1) must satisfy the following equations:

ρΨ+
1 (z) + ρ̄Ψ̄−

1 (z) = −p(t), ρΨ−
1 (z) + ρ̄Ψ̄+

1 (z) = −p(t) (2.16)

for t ∈ C , where we denoted

ρ =
∆

µ2
, (2.17)

and

∆ = µ2 − µ1. (2.18)

Adding and subtracting the relations (??), we get the following equivalent
restrictions:(

ρΨ1(t) + ρ̄Ψ̄1(t)
)+

+
(
ρΨ1(t) + ρ̄Ψ̄1(t)

)−
= −2p(t), (2.19)

(
ρΨ1(t)− ρ̄Ψ̄1(t)

)+ −
(
ρΨ1(t)− ρ̄Ψ̄1(t)

)−
= 0

for t ∈ C .
From (??)2 we obtain the following relation

ρΨ1(z)− ρ̄Ψ̄1(z) = 0. (2.20)

The restriction (??)1 is equivalent with a nonhomogeneous Riemann-Hilbert
problem. Following Muskhelishvili’s formalism ([?], Ch. 6), we get the following
expression of the complex potentials:

Ψ1(z1) = −µ2

∆

X(z1)

2πi

∫
C

p(t)dt

X+(t)(t− z1)
+

µ2

2∆
P (z1)X(z1)

Ψ2(z2) =
µ1

∆

X(z2)

2πi

∫
C

p(t)dt

X+(t)(t− z2)
− µ1

2∆
P (z2)X(z2), (2.21)
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where P (z) is an arbitrary polynomial with complex coefficients and we de-
noted by χ(z) Plemelj’s function i.e.

X(z) =
1

χ(z)
(2.22)

with
χ(z) =

√
(z2 − a2)(z2 − n2a2)[z2 − (n+ 2)2a2]. (2.23)

Taking into account the far field restriction (??) the polynomial P (z) has
second degree .

Let us assume now that the crack faces are subjected to a given stress
having a constant value p, i.e.

p(t) = p = const. > 0, for t ∈ C . (2.24)

Using the theory of complex functions ([4], Chap. 6) the integrals involved
in (??) take the following form:

1

2πi

∫
C

pdt

X+(t)(t− zk)
=

p

2

[
1

X(zk)
− (α3z

3
k + α2z

2
k + α1zk + α0)

]
(2.25)

for k = 1, 2 .
So, using (??) in (??) we obtain the following expressions for our complex

potentials:

Ψ1(z1) =
µ2

2∆
p

{
α3z

3
1 + α2z

2
1 + α1z1 + α0√

(z21 − a2)(z21 − n2a2)[z21 − (n+ 2)2a2]
− 1

}
+

µ2

2∆

P (z1)√
(z21 − a2)(z21 − n2a2)[z21 − (n+ 2)2a2]

, (2.26)

Ψ2(z2) = − µ1

2∆
p

{
α3z

3
2 + α2z

2
2 + α1z1 + α0√

(z22 − a2)(z22 − n2a2)[z22 − (n+ 2)2a2]
− 1

}
−

µ1

2∆

P (z2)√
(z22 − a2)(z22 − n2a2)[z22 − (n+ 2)2a2]

(2.27)

with

α3 = 1, α2 = 0, α1 = −2n2 + 4n+ 5

2
a2, α0 = 0. (2.28)

According to (??) we have

Φ(zj) =

∫
Ψ(zj)dzj , j = 1, 2. (2.29)

To assure the uniformity of displacement field u expressed through complex
potentials Φj(zj) as in (??)1,2, we have to guarantee the uniformity of the
potentials Φj(zj) on closed path around the three cracks.
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This requirement uniquely determines the polynomials P (zj) (see the Ap-
pendix A) and leads to the following final expressions of the complex potentials
Ψj(zj)

Ψ1(z1) =
pµ2

2∆

(
z31 − J3

J1
z1

χ(z1)
− 1

)
, Ψ2(z2) = −pµ1

2∆

(
z32 − J3

J1
z2

χ(z2)
− 1

)
(2.30)

where

Jk =

∫ (n+2)a

na

tk

A(t)
dt, for k = 1, 2, 3 (2.31)

and A(t) is defined by:

A(t) =
√
(a2 − t2)(n2a2 − t2)((n+ 2)2a2 − t2). (2.32)

3 Asymptotic crack tip values

Due to the symmetry of the configuration of our orthotropic linear elastic com-
posite, we start to determine the asymptotic values of the complex potentials
Ψ(zj) and of the stress field σij , i, j = 1, 2 for the crack tips a, na and (n+2)a.

To obtain these values, we have to know the nonregular parts as asymptotic
values of the potentials in a small neighborhood of the crack tip. We denote by
x1 and x2 the Cartesian coordinates of a current point situated in the vicinity
of the crack tip a. We have

x1 = a+ r cos θ , x2 = r sin θ , (3.1)

where the polar coordinates r and θ designate, respectively, the radial distance
from the crack tip and the angle between the Ox1 axis and the radial line in
trigonometric sense. Using (??) and (??) we get

zj − a = r(cos θ + µj sin θ), j = 1, 2. (3.2)

Introducing the functions

Γj(θ) = cos θ + µj sin θ , j = 1, 2 (3.3)

the above relations (??) become

zj − a = rΓj(θ), j = 1, 2. (3.4)

In a small vicinity of the crack tip a we have

zj ≈ a , j = 1, 2 (3.5)

and the following approximate equation:

χ(zj) ≈
√
2ar a2

√
Γj(θ)(n+ 1)2(n− 1)(n+ 3) , j = 1, 2. (3.6)
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From (??) and (??) we obtain the asymptotic on nonregular parts of the
complex potentials in a small neighborhood of the tip a

Ψ1(z1) ≈
p

2∆

√
a

2r

µ2√
Γ1(θ)

m1, Ψ2(z2) ≈ − p

2∆

√
a

2r

µ1√
Γ2(θ)

m1 (3.7)

where

m1 = m1(n) =
1− J3

J1a2

(n+ 1)
√
(n− 1)(n+ 3)

. (3.8)

The asymptotic value of the stresses σij , i, j = 1, 2 near the tip are obtained
using the representations (??)3−6 and the relations (??) :

σ11(r, θ) ≈
p
√
a√
2r

m1 Re

{
µ1µ2

∆

(
µ1√
Γ1(θ)

− µ2√
Γ2(θ)

)}
,

σ12(r, θ) = σ21(r, θ) ≈
p
√
a√
2r

m1 Re

{
µ1µ2

∆

(
−1√
Γ1(θ)

+
1√
Γ2(θ)

)}
,

σ22(r, θ) ≈
p
√
a√
2r

m1 Re

{
1

∆

(
µ2√
Γ1(θ)

− µ1√
Γ2(θ)

)}
. (3.9)

We consider now the crack tip na.
In a similar manner as for the crack tip a, it leads us to the following

asymptotic values:

Ψ1(z1) ≈
p

2i∆

√
a

2r

µ2√
Γ1(θ)

m2, Ψ2(z2) ≈ − p

2i∆

√
a

2r

µ1√
Γ2(θ)

m2 (3.10)

where

m2 = m2(n) =
n3 − n J3

J1a2

2(n+ 1)
√
(n− 1)n

(3.11)

and

σ11(r, θ) ≈
p
√
a√
2r

m2 Re

{
µ1µ2

i∆

(
µ1√
Γ1(θ)

− µ2√
Γ2(θ)

)}
,

σ12(r, θ) = σ21(r, θ) ≈
p
√
a√
2r

m2 Re

{
µ1µ2

i∆

(
−1√
Γ1(θ)

+
1√
Γ2(θ)

)}
,

σ22(r, θ) ≈
p
√
a√
2r

m2 Re

{
1

i∆

(
µ2√
Γ1(θ)

− µ1√
Γ2(θ)

)}
. (3.12)

In these relations r is the radial distance from the crack tip na to an
arbitrary point in the vicinity of considered tip.
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To get the asymptotic values near the crack tip (n+ 2)a, we use the same
procedure and we obtain

Ψ1(z1) ≈
p

2∆

√
a

2r

µ2√
Γ1(θ)

m3, Ψ2(z2) ≈ − p

2∆

√
a

2r

µ1√
Γ2(θ)

m3 (3.13)

where

m3 = m3(n) =
(n+ 2)3 − (n+ 2) J3

J1a2

2(n+ 1)
√
(n+ 2)(n+ 3)

(3.14)

and the asymptotic value of the normal stresses σij , i, j = 1, 2 have the same
representation as in (??) but we have to replace m1 from (??) with m3 from
(??).

4 Numerical example using tangential stress criterion

In this Section we extend the maximum tangential stress criterion from isotropic
brittle materials ([36]-[37]) to orthotropic materials. We intend to observe
which tip of the cracks will propagate first for a particular orthotrop com-
posite material.

Erdogan and Sih’s maximum tangential stress criterion states the following
hypothesis for the extension of cracks in a brittle material under slowly applied
plane loads:

– The crack extension starts at its tip in radial direction.
– The crack extension starts in the plane perpendicular to the direction of

greatest tension.

These hypotheses imply that the crack will start to grow from the tip in
the direction along which the tangential stress σθθ is maximum and the shear
stress σrθ is zero, (i.e. σθθ is a principal stress and the shear stress σrθ vanishes
for that direction).

Mathematically, the above hypothesis are expressed by

σθθ(θc) = σc,
∂σθθ

∂θ
(θc) = 0,

∂2σθθ

∂θ
(θc) < 0. (4.1)

Let us consider a Graphite-epoxy fiber - reinforced orthotropic composite
material characterized by the following engineering constants ([2])

E1 = 190GPa, E2 = E3 = 10GPa, G12 = 7GPa,

G13 = G23 = 6GPa, ν12 = 0.3, ν13 = ν23 = 0.2, (4.2)

where E1, E2, E3 are Young’s moduli in the corresponding symmetry directions
of the material, ν12, ..., ν23 are the Poisson’s ratios and G12, G13, G23 are the
shear moduli.
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The compliance coefficients ωklmn (k, l,m, n = 1, 2) involved in the rela-
tions (??)-(??) for our composite material (??) have the following values:

ω1111 = 191.62GPa, ω1212 = ω1221 = ω2112 = 7GPa,

ω2222 = 10.48GPa, ω1122 = 3.57GPa. (4.3)

With these values in (??) we get the parameters A and B

A = 13.26; B = 18.28 (4.4)

and our algebraic equation (??) become:

µ4 + 26.52µ2 + 18.28 = 0, (4.5)

with the roots µ1 = µ̄3 and µ2 = µ̄4:

µ1 = 5, 08i, µ2 = 0, 84i. (4.6)

We observe that in this case the roots of eq. (??) are note equal as supposed
before.

The physical components of the stress, the tangential stress σθθ and the
shear stress σrθ are given by:

σθθ = σ11 sin
2 θ − 2σ12 sin θ cos θ + σ22 cos

2 θ,

σrθ = σ12 cos 2θ +
σ22 − σ11

2
sin 2θ. (4.7)

To determine the propagation of crack tips we find the maximum value of
the tangential stress σθθ, for all crack tips. The crack will start to propagate
in a perpendicular direction to the direction of θc from the tip for which σθθ

is maximum.
Due to the symmetry of the problem we shall study only the behavior of

the tips a, na, (n+ 2)a.
In the Figs. 2 - 4, using the numerical computations, we have represented

the normalized tangential stress σθθ and normalized shear stress σrθ corre-
sponding to above mentioned tips a, na, (n+2)a, versus θ and n. The stresses
were normalized by parameter α given by the relation:

α =
1

p

√
2r

a
. (4.8)

3
2

 θ 
1

0
2

 n 

4
6

8

0

1

2

 α
 σ

θ
θ
 (
θ
,n

) 
 fo

r 
 v

a

3
2

 θ 
1

0
2

4

 n 

6
8

-0.5

0

0.5

1

-1

 α
 σ

r 
θ
 (
θ
,n

) 
 fo

r 
 v

a

Fig. 2 σθθ (left) and σrθ (right) normalized with α =
√

2r
p
√

a
for crack tip a
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3
2

 θ 
1

0
2

4

 n 

6
8

1

2

0

 α
 σ

θ
θ
 (
θ
,n

) 
 fo

r 
 v

n 
a

3
2

 θ 
1

0
2

4

 n 

6
8

0

-0.5

0.5

-1

-1.5

 α
 σ

r 
θ
 (
θ
,n

) 
 fo

r 
 v

n 
a

Fig. 3 σθθ (left) and σrθ (right) normalized with α =
√

2r
p
√

a
for crack tip na

3
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 θ 
1

0
2

4

 n 

6
8

1.5

1

0.5

0

 α
 σ

θ
θ
 (
θ
,n

) 
 fo

r 
 v

(n
+

2)
 a

3
2

 θ 
1

0
2

4

 n 

6
8

-0.5

0.5

0

 α
 σ

r 
θ
 (
θ
,n

) 
 fo

r 
 v

(n
+

2)
 a

Fig. 4 σθθ (left) and σrθ (right) normalized with α =
√

2r
p
√

a
for crack tip (n+ 2)a

Let us denote by σ
(v)
θθ and σ

(v)
rθ the tangential and shear stress, respectively,

normalized by α (??) and corresponding to the tip v ∈ {a, na, (n+2)a}, and by∑(v)
θθ - the maximum value of the normalized tangential stress corresponding

to the tip v, i.e.

Σ
(v)
θθ = max

θ∈[0,π]
σ
(v)
θθ , (4.9)

for v ∈ {a, na, (n+ 2)a}.
We consider first case n = 2 (interacting cracks).

Using the eqs (??), (??), (??)-(??), (??)-(??) and mathematical software

we ploted the normalized tangential stress σ
(v)
θθ in Fig. 5 (left) and respec-

tively the normalized shear stress Σ
(v)
rθ in Fig. 5 (right) corresponding to

v ∈ {a, na, (n+ 2)a} and parameter α (??).

We observe, see Fig. 5 (left), that the values Σ
(v)
θθ satisfy the inequality:

Σ
((n+2)a)
θθ < Σ

(na)
θθ ≤ Σ

(a)
θθ (4.10)

and the values Σ
(a)
θθ and Σ

(na)
θθ differ by a small quantity.
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θ ∈ [0,π]
0 0.5 1 1.5 2 2.5 3

 α
 σ

θ
θ
 

0

0.5

1

1.5

v
a

v
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(n+2)a
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Fig. 5 σθθ (left) and σrθ (right) normalized with α =
√

2r
p
√

a
for n = 2

Using extended criterion (MTS) due to Erdogan and Sih to orthotropic
materials and (??) we conclude that:

– the inner tips start to propagate first;

– the critical values of the propagation angle θ
(a)
c and θ

(na)
c , corresponding

to the tips a and at na, respectively, are in a vicinity of 90o and 270o,
respectively, and due the second hypothesis the crack tips a and na will
propagate along its line .

Now, we consider the case n = 9 (non-interacting cracks).
Using the same procedure as in the previous cases, we plotted in Figs. 6 the

normalized tangential stress σ
(v)
θθ (left) and normalized shear stress σ

(v)
rθ (right)

corresponding to the tip v ∈ {a, na, (n+ 2)a}.
From Fig. 6 (left) we observe that all three tangential stresses have an

approximative maximum value:

Σ
(a)
θθ ≈ Σ

(na)
θθ ≈ Σ

((n+2)a)
θθ . (4.11)

θ ∈ [0,π]
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Fig. 6 σθθ (left) and σrθ (right) normalized with α =
√

2r
p
√

a
for crack tip n = 9

Again, from extended (MTS) criterion and (??) we conclude that:

– all three tips start to propagate simultaneously along its line.
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5 Conclusions

We considered an homogeneous elastic orthotropic solid containing three equal
collinear cracks in mode I of fracture with uniform tensile stress.

The elastic state produced in the body is determined using the theory of
Riemann-Hilbert problem by complex potentials. Analytical solution of three
equal collinear cracks in an orthotropic material exerted by uniform normal
stress in Mode I of fracture has been elaborated.

For a graphite-epoxy composite which contains three equal collinear cracks
we extended MTS criterion due to Erdogan and Sih ([?], [?]) and we found
using numerical computations which tip propagated first for two considered
configurations:

– If the length of the cracks is greater than the distance between the cracks,
the inner tips will start to propagate first; the propagation of crack tips is
along cracks line. The cracks tend to unify and the interaction between the
cracks is strong.

– If the length of the cracks is much smaller than their distance, all tips start
to propagate simultaneously along cracks line. The interaction between the
cracks is weak.

Appendix A

From (2.2) we get that Φj(zj) can be multivalued even if Ψj(zj), j = 1, 2 are univalued.
Consequently, to assure the uniformity of the displacement fields, we must guarantee the
uniformity of the potentials Φj(zj), j = 1, 2 on closed path around the two cracks.

We denote by U and V the crack tips and by Λ and Λj the corresponding simple
closed curves around the crack (U, V ) in the complex planes z = x1 + ix2 and respectively
zj = x1 + µjx2, j = 1, 2, respectively.

According to the relations (??) and (??) the uniformity of u1 is assured if the potentials
Ψj(zj), j = 1, 2 satisfy the restriction:

2∑
j=1

∮
Λj

(
bjΨj(zj)dzj + bjΨj(zj)dzj

)
= 0. (A.1)

Taking into account that the integrals involved in (??) rest unchanged if Λ and Λj ,
j = 1, 2 are changed, and squeezing the curve Λ around the crack we obtain that the
restriction (??) is equivalent to the following one:

Re

{∫ V

U

(
b1Ψ

+
1 (t) + b2Ψ

+
2 (t)

)
dt+

∫ V

U

(
b1Ψ

−
1 (t) + b2Ψ

−
2 (t)

)
dt

}
= 0. (A.2)

Using the relations (??) and (??), the uniformity of u1 will be assured if and only if the
following condition is satisfied for all three cracks:∫ V

U

(
b1Ψ

+
1 (t) + b2Ψ

+
2 (t)

)
dt =

Γ0

2

{
p

∫ V

U

(
Q(t)

iχ(t)
− 1

)
dt+

∫ V

U

P (t)

iχ(t)
dt

}
, (A.3)

where Γ0 and the polynomial Q(t) (see (??) for coefficients) are given by:

Γ0 =
b1µ2 − b2µ1

∆
, Q(t) = α3t

3 + α2t
2 + α1t+ α0. (A.4)
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We have (see [2,11]):
ImΓ0 = 0. (A.5)

Since, the limit values Ψ−
1 (t) and Ψ−

2 (t) satisfies the eq.

Ψ−
j (t) = −Ψ+

j (t) (A.6)

we can conclude that the condition (??) is fulfilled for all three cracks.
The uniformity of u2 is assured if the condition will be satisfied

2∑
j=1

∮
Λj

(
cjΨj(zj)dzj + cjΨj(zj)dzj

)
= 0. (A.7)

The above condition is fulfilled if we have satisfied the relations∫ V

U

pQ(t) + P (t)

χ(t)
dt = 0, (A.8)

for all three cracks, or, in the equivalent form:∫ −na

−(n+2)a

P (t)

χ(t)
dt = −p

∫ −na

−(n+2)a

Q(t)

χ(t)
,

∫ a

−a

P (t)

χ(t)
dt = −p

∫ a

−a

Q(t)

χ(t)
,

∫ (n+2)a

na

P (t)

χ(t)
dt = −p

∫ (n+2)a

na

Q(t)

χ(t)
(A.9)

where we denoted by P (t) the polynomial:

P (t) = C2t
2 + C1t+ C0. (A.10)

Denoting by

Ik =

∫ a

−a

tk

χ(t)
dt, Jk =

∫ (n+2)a

na

tk

χ(t)
dt (A.11)

observe that ∫ −na

−(n+2)a

tk

χ(t)
dt = (−1)kJk, (A.12)

and
I2k+1 = 0, k = 0, 1, 2, ... (A.13)

with (??) the restrictions (??) take the following system of algebraic equations:

J0C0 − J1C1 + J2C2 = p(J3 + α1J1)

I0C0 + I2C2 = 0

J0C0 + J1C1 + J2C2 = −p(J3 + α1J1). (A.14)

Solving the above system, we get the following values for the coefficients C0, C1 and C2

of the polynomial P (z):

C0 = 0, C1 = −p

(
J3

J1
+ σ1

)
, C2 = 0. (A.15)
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